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Abstract 37 

Positive self-view is evident by a bias in favor of positive self-referential processing, as 38 
individuals tend to endorse positive characteristics over negative ones when making self-39 
judgments. While research suggests that a positivity bias can contribute to psychological well-40 
being, it remains unclear how to enhance positive self-referential processing. Here, we reported 41 
an integrated training procedure that aimed at enhancing individuals’ positive self-referential 42 
processing. Specifically, participants engaged in a cue-approach training task (CAT) during 43 
wakefulness where they gave speeded motor responses to positive personality traits. In a 44 
subsequent nap, we unobtrusively re-played half of the trained positive traits during participants’ 45 
slow-wave sleep to reactivate memories associated with these positive traits (targeted memory 46 
reactivation, TMR). Upon awakening, we found that CAT+TMR enhanced participants’ positive 47 
self-referential processing, as evidenced by faster endorsement of positive traits. Further analysis 48 
revealed that this enhancement was associated with specific brainwave patterns during sleep: 49 
delta (1–4 Hz) traveling waves moving from posterior to anterior brain regions. These findings 50 
demonstrate the potential benefits of integrated wakeful cue-approach training and sleep-based 51 
memory reactivation in strengthening positive self-referential processing.  52 

Keywords: self-positivity, cue-approach training, targeted memory reactivation, traveling wave, 53 
self-referential processing, slow-wave sleep 54 
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Introduction 56 

People often perceive themselves through rose-tinted lenses, exhibiting a positivity bias (Taylor 57 
& Brown, 1988; Zell et al., 2020). This positivity bias is evident in self-referential judgments, as 58 
people preferentially choose positive personality traits to describe themselves and have better 59 
memories for positive traits compared to negative ones (Taylor & Brown, 1988; Watson et al., 60 
2007; Guenther & Alicke, 2010; Romero et al., 2016; Dainer-Best et al., 2017; Collins & Winer, 61 
2023). This positive self-referential bias is commonly associated with lower levels of depressive 62 
symptoms (e.g., self-doubt, worthlessness), and is crucial for mental well-being, especially when 63 
facing self-threatening information (Sowislo et al., 2013).  While the psychological benefits  of 64 
positive self-referential processing is well-established (Taylor & Brown, 1988; Colombo et al., 65 
2020; Orth et al., 2022; Weisenburger et al., 2023), a significant gap exists in understanding how 66 
to effectively enhance this process (Orth et al., 2022; Hoffmann et al., 2023). To address this gap, 67 
we integrated two procedures that may enhance positive self-referential processing: (1) wakeful 68 
cued-approach training (CAT, Schonberg et al., 2014), and (2) a sleep-based targeted memory 69 
reactivation procedure (TMR, Oudiette and Paller 2013).  70 

The CAT task prompts participants to give speeded motor responses to cued stimuli, 71 
ultimately increasing positive evaluations or preference toward these trained stimuli (Schonberg 72 
et al., 2014; Salomon et al., 2018; Schonberg & Katz, 2020; Itzkovitch et al., 2022). While CAT 73 
has been used to alter preferences for various stimuli, such as food, abstract patterns, images (for 74 
a review, see Salomon et al. 2018), its impact on higher-order social-cognitive processes such as 75 
self-referential processing remains unexplored. Complementing the wakeful CAT, the TMR aims 76 
to promote memory consolidation during post-training sleep, a phase vital for stabilizing newly 77 
acquired memories. During sleep, covert, repeated memory reactivation contributes to memory 78 
consolidation, notably during non-rapid eye movement (NREM) sleep characterized by the <4 79 
Hz slow-wave activity (Diekelmann & Born, 2010; Rasch & Born, 2013; Klinzing et al., 2019; 80 
MacDonald & Cote, 2021; Brodt et al., 2023). TMR entails replaying memory-related sensory 81 
cues to sleeping participants, further strengthening episodic memories or even changing 82 
subjective preferences during NREM sleep (Creery et al., 2015; Hu et al., 2015; Schreiner & 83 
Rasch, 2015; Cairney et al., 2016; Ai et al., 2018; Lewis & Bendor, 2019; Abdellahi et al., 2023; 84 
for a meta-analysis of TMR, see Hu et al., 2020). Here, in the context of self-referential 85 
processing, we hypothesize that the integration of wakeful CAT and sleep-based TMR could 86 
change how individuals perceive and endorse positive personality traits as self-descriptive. 87 
Specifically, while CAT primes the brain to be more receptive to specific positive traits, TMR 88 
works to consolidate these traits during sleep, potentially leading to more robust and enduring 89 
positive self-referential judgments. Therefore, we tested the joint impact of CAT and TMR on 90 
the positive self-referential processing, particularly focusing on how they influence the 91 
immediate and long-term endorsements and retention of positive personality traits. 92 

During NREM sleep, cardinal neural oscillations such as slow oscillations (<1 Hz), delta 93 
waves (1–4 Hz) and the 12-16 Hz spindles are instrumental in mediating memory reactivation 94 
and consolidation (Born & Wilhelm, 2012; Rasch & Born, 2013; Antony et al., 2017; Klinzing et 95 
al., 2019; Schreiner et al., 2021; Petzka et al., 2022; Brodt et al., 2023). Specifically, in TMR, 96 
researchers repeatedly found that the cue-elicited delta and sigma EEG power changes predicted 97 
TMR benefits (Lehmann et al., 2016; Blume et al., 2017; Göldi et al., 2019; Denis & Payne, 98 
2023; Liu et al., 2023; Schechtman et al., 2023; Xia et al., 2023). While these findings have 99 
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significantly advanced our understanding, they remained silent on how propagation of sleep EEG 100 
oscillations may contribute to memory consolidation. The propagation of EEG oscillations across 101 
different brain regions, known as traveling waves, has been increasingly recognized for their 102 
significance in linking brain function to behavior (Muller et al., 2018). Importantly, slow 103 
oscillations and spindles have been observed to manifest as robust traveling waves propagating 104 
across the cortices (Muller et al., 2018). Such traveling waves may coordinate cross-region 105 
information flow and neural communications during sleep, which can be crucial for reactivating 106 
and consolidating memory traces (Massimini et al., 2004; Murphy et al., 2009; Hangya et al., 107 
2011; Kurth et al., 2017). However, to date, how delta slow-wave activity as traveling waves 108 
may modulate memory is not yet understood. Given that the TMR employs external sensory cues 109 
to trigger internal memory reactivation, it is plausible that upon processing auditory cues such as 110 
the spoken positive traits, the delta slow waves would exhibit a forward trajectory from the 111 
posterior to the anterior frontal brain regions, contributing to effective processing of positive 112 
traits and thus influencing positive self-referential processing. Indeed, recent research suggests 113 
that a forward patterns of traveling wave could aid in the bottom-up processing of stimuli in a 114 
wakeful state (Alamia et al., 2023). We thus hypothesize that during TMR, the forward slow 115 
traveling wave activity could align sensory processing with semantic processing of positive traits 116 
during sleep, thereby enhancing positive self-referential processing.  117 

Here, we employed an adapted version of the well-established self-referential encoding 118 
task (SRET) to quantify participants’ self-referential processing (Derry & Kuiper, 1981; Dainer-119 
Best et al., 2017, 2018; Collins & Winer, 2023, for procedure and tasks, see Figure 1). In 120 
addition to this SRET, we assessed participants’ recall of self-referential traits from the SRET in 121 
a free recall task, and self-referential preferences in a probe task. To examine the immediate and 122 
possible long-term effects of TMR, we measured participants’ self-referential processing twice: 123 
immediately after the TMR and one-week later. Our findings revealed that the integration of 124 
CAT and TMR facilitated the endorsement speed of positive personality traits immediately after 125 
sleep. Moreover, analysis of cue-elicited EEG showed that the strength of 1–4 Hz forward 126 
traveling waves predicted the endorsement speed of positive traits during immediate test and the 127 
endorsement of positive traits one-week later.  128 
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 129 

Figure 1 An overview of experimental design and main tasks  130 

(A) The task flow illustrates the baseline tests (phase 1), CAT and post-CAT tests (phase 2), 131 
sleep-based TMR (phase 3), and post-TMR tests (phase 4), followed by a delayed tests phase 132 
after one week (n = 35). (B) Modified SRET, in which participants made speeded binary 133 
endorsement task to determine whether a personality trait was descriptive of oneself, followed by 134 
rating the accuracy of specific traits in describing themselves within the same trial (i.e., 135 
endorsement level). After completing the baseline SRET, participants performed a self-136 
referential free recall task. In both the post-TMR and the one-week delay phases, participants 137 
completed the free recall task and the SRET with binary endorsements while omitting ratings. (C) 138 
An exemplar trial of CAT, in which participants either passively viewed positive traits presented 139 
visually and aurally (i.e., NoGo trials) or pressed a button when they saw a white circle appear 140 
immediately after the positive trait onset (i.e., Go trials). The average GSD (go-signal-delay) was 141 
900 ms. (D) Probe test, participants were presented with pairs of positive Go and NoGo traits and 142 
were asked to select which trait was more self-descriptive. Note that Go and NoGo traits in each 143 
pair were matched on baseline self-descriptive ratings (see Methods for a full description of the 144 
procedure and experimental tasks).  145 

Results 146 

Awake CAT promoted self-referential preferences  147 

First, to examine whether CAT promoted the preferences of positive Go traits, we analyzed the 148 
proportion of trials in which participants preferred Go traits over NoGo traits as better self-149 
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descriptive in the probe task (Figure 1D), using a generalized linear mixed model with 150 
participant factor as a random effect (GLMM, see Method for specific model). In each Go/NoGo 151 
pair, both traits had comparable initial endorsement level based on the baseline SRET rating 152 
phase. Consistent with previous CAT research (Salomon et al., 2018), we found that participants 153 
were more likely to choose Go over NoGo traits despite their comparable baseline endorsement 154 
level: mean proportion�=�53.3% (vs. chance level 50%), odds ratio (OR)�=�1.24, 95% CI 155 
[1.09, 1.41], p = 0.001. This result suggested that the CAT specifically increased participants’ 156 
self-referential choice of the Go traits in the probe task.  157 

Awake CAT + sleep TMR enhanced positive self-referential endorsement and speed  158 

Having established the effectiveness of CAT in enhancing the preferences of positive Go traits, 159 
we next examined how TMR may further influence positive self-referential processing. 160 
Specifically, we analyzed two outcome variables from the SRET task, including binary 161 
endorsement choice, and reaction times (RTs) when endorsing positive traits. Note that we 162 
applied false discovery rate (FDR) corrections for all multiple comparisons. 163 

To examine positive self-referential endorsements change, we ran a GLMM using 164 
baseline endorsement rating value as a covariate, TMR condition (Go-cued, Go-uncued, and 165 
NoGo-uncued) and time (baseline, post-TMR, and delay) as fixed effects, and participant factor 166 
as a random effect to predict endorsement choices (yes, no) of positive traits. Our results 167 
revealed a significant TMR effect, �2 (2) = 8.02, p = 0.018. Particularly, participants endorsed 168 
more Go-cued traits than NoGo traits (p = 0.026). No differences were found between other 169 
conditions (all ps >0.12). However, neither time nor the TMR by time interaction were 170 
significant, �2 (2) = 2.52, p = 0.284, �2 (4) = 2.80, p = 0.592, respectively.  171 

Given that choice speed could indicate preferences (Konovalov & Krajbich, 2019), we 172 
analyzed item-level RTs when participants endorsed positive traits via an LMM including TMR 173 
conditions and time as fixed effects. The results showed a significant main effect of time, F (2, 174 
35) = 8.37, p = 0.001, indicating that RTs became faster from baseline to post-TMR and delay 175 
(all ps < 0.001), while no difference was found between post-TMR and delay (p = 0.126). No 176 
significant main effects were observed for the TMR condition, F (2, 4921) = 0.73, p = 0.480. 177 
Notably, we found a significant TMR by time interaction, F (4, 4922) = 3.19, p = 0.013 (Figure 178 
2A). Post-hoc comparisons revealed that in the post-TMR, participants were significantly faster 179 
in endorsing Go-cued traits than NoGo-uncued traits (p = 0.022). In contrast, this pattern was not 180 
observed in the delay testing (p = 0.414). Other comparisons across different time points did not 181 
yield any significant differences in RTs (Go-uncued versus NoGo-uncued, Go-cued versus Go-182 
uncued traits, all ps >0.1). Taken together, these results suggest that the CAT+TMR jointly 183 
facilitated endorsement speed for Go-cued positive traits compared to NoGo-uncued traits.  184 

To address the concern that the observed RT differences might be solely due to the 185 
influence of CAT, we conducted an additional LMM in two additional independent behavioral 186 
samples to investigate if RT differences in endorsing positive traits were present between Go and 187 
NoGo trait words. These samples consisted of one group undergoing active CAT with ‘Go’ 188 
training trials and another group exposed to passive CAT without such active components (See 189 
SOM for behavioral sample details). In this analysis, we included CAT conditions (Go vs. 190 
NoGo), time (baseline, post-CAT, and delay), and group (active vs. passive) as fixed effects, 191 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2022.11.27.518064doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.27.518064
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

with participants as random effects, focusing on positive endorsement RTs. The results only 192 
showed a significant main effect of time, F (2, 75) = 12.62, p < 0.001, with faster endorsements 193 
after CAT and during the delay tests compared to the baseline (all ps < 0.001). However, we 194 
observed no significant main effects or interactions specifically attributable to CAT (all 195 
ps >0.35). These findings, therefore, suggest that it is the combination of CAT and TMR, rather 196 
than CAT alone or solely repetition of positive trait words, that promotes the endorsement speed 197 
of positive traits.  198 

 199 

Figure 2 Behavioral results across time in the SRET tasks 200 

 (A). Fitted values for the interaction effect of TMR conditions and time on predicting log-201 
transformed RTs for endorsing positive traits during the SRET. Error bars indicate 95% 202 
confidence intervals (CIs). (B). Fitted values for the interaction effect of TMR conditions and 203 
time on predicting recall percentage for positive traits during the SRET. * = p < 0.05. 204 

Overall enhancement of positive self-referential memory recall following CAT and TMR  205 

Recognizing the established efficacy of TMR in enhancing memory performance (Hu et al., 206 
2020), our study specifically investigated whether integrating CAT with TMR would improve 207 
the recall of positive traits in self-referential memory tests. We used a GLMM including TMR 208 
(Go-cued, Go-uncued, NoGo-uncued) and time (baseline, post-CAT, post-TMR, delay) as fixed 209 
effects, and participant factor as a random effect to predict percentage of positive traits 210 
participants recalled as self-referential. Results revealed a significant time effect, �2 (3) = 72.70, 211 
p < 0.001, with post-hoc comparisons indicating that compared to baseline, there were 212 
significantly higher recalls of positive traits at post-CAT, post-TMR and delay tests (ps <0.001, 213 
Figure 2B). Moreover, recall declined from the post-CAT to the delay (p = 0.011) and from the 214 
post-TMR to the delay (p < 0.001), while there was no difference between post-CAT and post-215 
TMR recalls (p = 0.063). Furthermore, we found no significant TMR effect, χ² (2) = 1.04, p = 216 
0.595, nor any significant TMR by time interaction, χ² (6) = 2.29, p = 0.891, indicating that CAT 217 
or TMR did not selectively change recall performance. Lastly, when examining the recall of 218 
negative traits, the time effect was not significant, χ² (3) = 3.35, p = 0.341, suggesting that the 219 
increased recall was specific to positive traits.  220 
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To ascertain whether CAT+TMR jointly contributed to the overall enhancement of 221 
positive self-referential memory, we also contrasted the current CAT+TMR group with the 222 
abovementioned two additional independent behavioral samples (active CAT and passive CAT 223 
groups, see SOM for behavioral sample details). A subsequent GLMM, accounting for earlier 224 
recall as a covariate, showed a significant group effect, χ² (2) = 9.29, p = 0.010. Participants who 225 
received both TMR and CAT exhibited superior recall of positive traits compared to the passive 226 
CAT group (p = 0.008), but not higher than the active CAT group (p = 0.085), while no 227 
significant difference was found between the active and passive CAT groups (p = 0.229, all FDR 228 
corrected). Together, these result highlights that combining CAT and TMR had long-lasting 229 
impact in facilitating self-referential recall of positive traits.  230 

Together, the findings demonstrated that CAT shifted preferences towards positive traits, 231 
while combining CAT and subsequent TMR effectively enhanced positive self-referential 232 
processing by accelerating RTs when for endorsing positive traits.  233 

Auditory processing of positive traits during sleep TMR  234 

To first validate the processing of spoken positive traits during sleep, we quantified cue-elicited 235 
event-related potentials (ERPs) and time-frequency resolved EEG power changes during the 236 
TMR. Consistent with prior TMR research (Schreiner et al., 2015; Lehmann et al., 2016; Antony 237 
et al., 2018; Schechtman et al., 2021; Abdellahi et al., 2023; Guttesen et al., 2023; Liu et al., 238 
2023; Schechtman et al., 2023; Xia et al., 2023), cue-elicited ERPs showed two positive clusters 239 
over frontal-central electrodes (F1/2, FC1/2, C1/C2, Fz, Cz) from 0.29 to 0.52 seconds and from 240 
1.04 to 1.40 seconds (two-tailed t-test, cluster-based permutation-corrected p < 0.005). In 241 
addition, the time-frequency analysis also identified two significant positive clusters over frontal-242 
central electrodes: the delta–theta–alpha band (1 to 12 Hz, 0 to 1.66 seconds), and the sigma–243 
beta band (10 to 30 Hz, 0.3 to 1.42 seconds, two-tailed t-test, cluster-based permutation-244 
corrected p < 0.001, Figure 3A, B). We next examined whether EEG power changes within these 245 
clusters may be associated with changes in RTs and choices during the positive self-referential 246 
processing. However, we did not find significant associations (all pcorrected > 0.562 for delta-theta-247 
alpha; and > 0.364 for sigma-beta.  248 

 249 
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Figure 3 Cue-elicited power changes did not predict post-TMR endorsements or positive 250 
endorsement speed  251 

(A) Grand averaged ERPs across frontal-central electrodes (F1/2, FC1/2, C1/2, Fz, Cz). Shaded 252 
area indicates significant time point when comparing ERPs against zero. Top right panel presents 253 
group average scalp topography of ERPs in response to TMR cues; with black circles 254 
highlighting the electrodes used in the ERP analysis. (B) Contour plot depicting the temporal and 255 
spectral characteristics of the significant clusters. Cluster a represents the low-frequency delta-256 
theta-alpha band (1–12 Hz), and cluster b represents the sigma-beta band (10–30 Hz), with both 257 
clusters showing significant changes across the TMR time course (cluster-based permutation-258 
corrected p < 0.001). 259 

Cue-elicited slow travelling waves predicted post-TMR positive traits endorsement speed 260 

Next, we investigated how traveling waves during TMR might influence post-TMR positive self-261 
referential processing. Given that TMR benefits would begin with effective sensory processing 262 
(posterior cortex), followed by high-level memory processing (see Liu et al. 2023), we 263 
hypothesized that the forward traveling waves propagating from posterior to anterior cortex 264 
would be critical here. Building upon methodologies used in previous research (Alamia et al., 265 
2023), we analyzed the strength of directionality in both forward (from posterior to anterior brain 266 
regions) and backward (from anterior to posterior brain regions) traveling waves within the first 267 
2s following the TMR cue onset, using EEG signals from midline electrodes (POz, Pz, CPz, Cz, 268 
Fz, FPz) during SWS in the 1–4 Hz frequency band (Figure 4A-C, see Method). The strength of 269 
forward and backward traveling waves was then utilized to predict item-level binary 270 
endorsement choices and RTs for endorsing positive traits, across immediate and a one-week 271 
delay test time, with False Discovery Rate (FDR) corrections for multiple comparisons.  272 
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 273 

Figure 4 Slow travelling waves after TMR cue onset 274 

(A). EEG signals from midline electrodes (0–2000 ms post-TMR cue) underwent two-275 
dimensional Fourier transform (2D-FFT) decomposition, yielding power spectra. Baseline-276 
corrected spectra using shuffled data delineate backward (anterior to posterior) and forward 277 
(posterior to anterior) traveling waves (detailed methodology in Alamia et al (2023). (B). Scalp 278 
diagram illustrating slow wave directionality. Forward waves are indicated by arrows pointing to 279 
frontal electrodes, backward waves to posterior electrodes. Asterisks mark analyzed electrode 280 
locations. (C) Demonstrations of forward (left panel) and backward (right panel) traveling waves. 281 

We used (G)LMM with intensities of traveling waves as a fixed effect, alongside the number of 282 
trait repetitions during TMR and baseline endorsement ratings as covariates, and participant as a 283 
random effect, to predict post-TMR endorsements and RTs when endorsing positive traits. 284 
Results revealed that during the post-TMR test, neither forward nor backward traveling waves 285 
significantly predicted endorsement probabilities (pcorrected > 0.272, Figure 5A&B). Notably, 286 
forward traveling waves negatively predicted RTs when endorsing positive trats in the immediate 287 
test (pcorrected = 0.002, Figure 5C), but not in the one-week delay (pcorrected = 0.766, Figure 5G). 288 
Backward traveling waves showed no significant associations (pcorrected = 0.686, Figure 5D&H). 289 
Interestingly, forward traveling waves also significantly predicted the endorsement of positive 290 
traits after one week (pcorrected = 0.026, Figure 5E), suggesting a delayed effect on positive self-291 
referential processing. Backward waves, however, did not demonstrate a significant prediction 292 
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(pcorrected = 0.060, Figure 5F). Together, our results showed that the forward traveling waves 293 
elicited by positive traits during sleep can predict post-sleep positive self-referential processing. 294 

 295 

Figure 5 Predictive impact of delta traveling waves on endorsement probabilities and RTs in 296 
post-TMR and delay phases of the SRET task. 297 

Predictions from forward and backward traveling waves on (A, B) endorsement probabilities in 298 
post-TMR phase. (C, D) RTs in post-TMR phase. (E, F) endorsement probabilities in delay 299 
phase. (G, H) RTs in delay phase. In panel (C, D, G, H), each data point corresponds to the fitted 300 
value from a single trial within the LMM. Where data points overlap, they present a darker shade. 301 
In panel (A, B, E, F), we excluded raw data points due to their binary (zero or one) nature. 302 
Shaded area indicates 95% confidence intervals (CIs). TW: traveling wave. SRET: self-303 
referential encoding task. ** = p < 0.01. * = p < 0.05. 304 

Discussion 305 

By combining wakeful cue-approach training (CAT) and sleep-based targeted memory 306 
reactivation (TMR), we found that this integrated procedure effectively enhanced participants’ 307 
positive self-referential processing. We first used CAT to heighten participants’ preferences for 308 
specific “Go” positive traits, extending the existing CAT research. Following this, TMR was 309 
employed to re-play a subset of these Go traits during participants’ SWS sleep, further enhancing 310 
their accessibility and consequently promoting positive self-referential processing. The CAT and 311 
TMR expedited endorsement of these Go-cued positive traits, although it did not selectively alter 312 
self-referential memory immediately after sleep TMR. After one week delay, we observed a 313 
general increase in positive memory recall, rather than TMR-specific changes. Additionally, the 314 
presence of 1–4 Hz forward slow travelling waves during TMR was associated with enhanced 315 
positive self-referential processing, indicating an important role of cross-regional forward neural 316 
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communications in driving behavioral benefits. These new findings contributed to our 317 
understanding of how to modulate and enhance positive self-referential processing. 318 

We first found that the CAT successfully increased participants’ likelihood to choose 319 
Go over NoGo traits as self-descriptive in the probe task, demonstrating CAT’s efficacy in 320 
influencing self-referential choices. This finding extends the known effects of CAT on 321 
consumables such as snacks (Salomon et al., 2018; Schonberg & Katz, 2020), revealing its 322 
capability to shape high-level self-referential processing. Following the CAT phase, we replayed 323 
a subset of the trained positive traits during sleep to determine the cumulative impact of CAT 324 
and TMR on self-referential processing. Behaviorally, we found that participants exhibited faster 325 
endorsement of positive traits when these traits were trained during the wakeful CAT and 326 
subsequently reactivated during the SWS (Go-cued), compared to untrained traits (NoGo-327 
uncued). This contrast highlights the joint benefits of CAT and TMR in facilitating the speed of 328 
positive self-referential processing. Apart from positive endorsement speed, we also observed 329 
that participants endorsed more Go-cued positive traits than NoGo-uncued traits as self-330 
descriptive independent of testing time. Previous CAT research has indicated that the CAT can 331 
improve stimulus salience, effectively making these traits more prominent during the waking 332 
state (Schonberg et al., 2014; Schonberg & Katz, 2020). TMR during post-training sleep, on the 333 
other hand, further promoted memory reactivation and consolidation via cueing, improving the 334 
accessibility and retrieval efficiency of the cued stimuli (Walker & Stickgold, 2006; Diekelmann 335 
& Born, 2010; Klinzing et al., 2019; Lewis & Bendor, 2019; Brodt et al., 2023). In the context of 336 
our study, the TMR following the CAT likely further augments the accessibility of the trained 337 
traits, thereby speeding up their endorsements.  338 

The accelerated endorsement of positive traits and the overall higher endorsement 339 
probabilities for CAT+TMR traits can be partially explained by neural oscillations during sleep 340 
and TMR. In contrast to power spectral analysis that often concentrates on regional oscillations, 341 
the concept of traveling waves encompasses a wider array of neural characteristics. These 342 
include both spatial propagation and frequency property, offering a more comprehensive view of 343 
the spatial-temporal dynamics of brain activity during sleep (Massimini et al., 2004; Muller et al., 344 
2018; Zhang et al., 2018; Halgren et al., 2019). Our study observed that the 1–4 Hz delta forward 345 
traveling waves, moving from posterior to anterior brain regions within 2 seconds after cue onset, 346 
were significantly associated with post-TMR endorsement RT and the endorsement of positive 347 
traits following a one-week delay. This finding, for the first time, suggests that delta forward 348 
traveling waves are pivotal in memory consolidation during sleep, broadening the existing 349 
knowledge of the neural mechanisms supporting sleep-mediated memory consolidation 350 
(Massimini et al., 2004). Previous studies have indicated the thalamic origin of delta waves 351 
during sleep (Adamantidis et al., 2019) and its integral role in memory consolidation (Schreiner 352 
et al., 2022). Our results contribute to this body of knowledge by demonstrating that the delta 353 
waves, as traveling waves, may also contribute to memory consolidation during exogenous 354 
memory reactivation. Furthermore, the forward direction of delta traveling waves implies the 355 
bottom-up processing of external cues in TMR sleep. Specifically, re-playing spoken positive 356 
traits during sleep, may initiate basic auditory processing at the posterior brain regions that 357 
advanced to high-level semantic and self-referential processing at the frontal regions. This 358 
forward propagation of delta slow waves may effectively integrate the positive traits into one’s 359 
self-scheme, contributing to positive self-referential processing. Although the exact 360 
neurocomputing processing remains elusive, parallels can be drawn from awake-state studies. A 361 
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noteworthy study highlighted the bottom-up processing of visual stimulus is facilitated by alpha-362 
band forward traveling waves (Alamia et al., 2023). These waves spatiotemporally organize 363 
distributed brain areas, enabling efficient processing of external stimuli. Consequently, we 364 
proposed that the sleeping brain processes spoken positive traits by coordinating different brain 365 
regions through traveling waves, particularly the forward delta traveling waves that propagated 366 
from posterior to anterior brain regions.  367 

When evaluating participants’ self-referential memories using a free recall task, we did 368 
not find significant main effects of CAT or TMR. This result may stem from the experimental 369 
design, where participants engaged in the free recall task twice prior to sleep. Repeated recall 370 
may induce fast memory consolidation that makes the self-referential memories less susceptible 371 
to TMR (Antony et al., 2017; Liu et al., 2023). Notably, a week later, participants showed an 372 
overall enhanced memories for positive traits compared to the baseline, regardless of CAT or 373 
TMR manipulations. Supporting this, broader sleep and TMR studies indicate memory 374 
enhancement can often be observed over extended periods (Rakowska et al., 2021; Barner et al., 375 
2023). Even more intriguingly, we found that this non-selective, general memory enhancement 376 
was only observed in the CAT+TMR group, but not in the other two groups (CAT only, or 377 
passive CAT). These findings suggest that the post-CAT sleep and TMR may further enhance 378 
the overall positive self-referential memories, regardless of cueing. Indeed, previous TMR 379 
research suggested that memory reactivation during sleep may have generalized benefits: in 380 
addition to enhancing cue-specific memories, TMR also strengthened uncued memories that 381 
shared the same context as the cued memories, leading to overall benefits of both cued and 382 
uncued memories (Schechtman et al. 2023; see also Oudiette et al., 2013 for TMR generalization 383 
effects).  384 

Future directions and limitations shall be discussed. First, our study follows most prior 385 
research in administering the TMR during the NREM sleep, given the established link between 386 
NREM sleep and TMR benefits (see Lewis and Bendor 2019; Hu et al. 2020). However, research 387 
also pinpoints the role of REM sleep in modulating emotional memory and vocabulary learning 388 
(Batterink et al., 2017; Hutchison et al., 2021). Future research could investigate how TMR 389 
during REM sleep, and how the REM-related neural activity may impact the consolidation of 390 
self-referential memories. Second, while positive self-referential processing is linked with mental 391 
wellness (Wisco, 2009; Lou et al., 2019; Collins & Winer, 2023), our study did not examine how 392 
our procedure may impact outcomes that bear direct clinical relevance, such as depression-393 
related symptoms. Future research is warranted to investigate whether enhancing positive self-394 
referential processing may directly alleviate depressive symptoms (Orth et al., 2022; Hobbs et al., 395 
2023). Third, while our research question concerns self-referential memory, we did not include 396 
non-personal traits as a control condition. Future studies could consider including a control task, 397 
specifically designed to disentangle non-self-referential memory from self-referential memory in 398 
understanding the CAT and TMR effects.  399 

In conclusion, our study presents a novel approach in enhancing positive self-referential 400 
processing by combining wakeful motor training and sleep-based memory reactivation. In 401 
addition to behavioral benefits, our findings underscore the importance of cue-related forward 402 
delta traveling waves in predicting the speed of endorsing positive traits, establishing a direct 403 
connection between traveling waves induced by TMR and positive self-referential processing. 404 
By reinforcing positive self-referential processing through CAT+TMR, it may be possible to 405 
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alter maladaptive cognitive biases or restore self-esteem, contributing to improved mental health 406 
outcomes. 407 
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Data and code availability 686 

The data and analytical code supporting the study’s findings are available at the Open Science 687 
Framework repository: https://shorturl.at/bEG23. 688 

Experimental model and study participant details 689 

Participants 690 

Our final sample included 35 participants with valid behavioral and EEG data (8 males, Mage ± 691 
SD = 20.83 ± 2.20 years), which is comparable to recent TMR studies (e.g., Schechtman et al. 692 
2023). Nine additional participants had inadequate number of cues (< =3 rounds) due to 693 
relatively short slow-wave sleep (SWS). To ensure signal-to-noise ratio in the EEG analyses, 694 
experiments for these participants were terminated following the TMR, and data from these nine 695 
participants were not included in subsequent analyses. An additional participant was excluded 696 
because he or she reported hearing the cues during sleep. To facilitate sleep in the lab, we asked 697 
participants to wake up one hour earlier than their usual waking time and to avoid consuming 698 
caffeinated drinks on the day prior to – and of – the experiment. Participants were pre-screened 699 
regarding any current or history of sleep, psychiatric, or neurological disorders and had normal 700 
or corrected-to-normal vision. Participants received monetary compensation for their time (250 701 
RMB, ~36 USD), and gave written consent prior to the experiment. The study was approved by 702 
the Human Research Ethics Committee of the University of Hong Kong.  703 

Materials  704 

All experimental procedures were implemented in E-Prime® 3.0 (Psychology Software Tools, 705 
Inc., Sharpsburg, Pennsylvania, USA). A pilot group of 20 participants rated personality traits 706 
(two characters trait words) on a scale from 1 (extremely negative) to 9 (extremely positive). We 707 

selected 60 positive personality trait adjectives (e.g., ‘clever’, M ± SD = 6.92 ± 0.44) and 60 708 

negative personality trait adjectives (e.g., ‘lazy’, M ± SD = 3.00 ± 0.44; see SOM for the 709 
complete list of personality traits). Each spoken trait lasted around 1 second (range: 0.72-1.08s, 710 
M ± SD = 0.91 ± 0.08s). During the TMR phase, we used a neutral trait (valence rating: 4.9) as a 711 
control word. 712 

Method details 713 

Task overview  714 

Participants attended two lab sessions, scheduled approximately one week apart. In the first 715 
session, participants arrived to the lab at approximately 12:00 pm (exact arrival times ranged 716 
between 11:30 am to12:30 pm), where they read and signed consent forms and were set up with 717 
EEGs. Subsequently, a series of four task phases began in which participants completed a 718 
number of tests, beginning with baseline tests in the first phase, followed by CAT and post-CAT 719 
tests in the second phase, sleep-based TMR in the third phase, and post-TMR tests in the fourth 720 
phase. In the preliminary baseline phase, participants completed computer-based personality 721 
questionnaires, serving as a cover story for the personality trait words (hereafter, traits) presented 722 
to them in the following SRET. During the SRET, participants rated the extent to which specific 723 
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traits described themselves. Participants then completed a self-referential free recall test. In the 724 
second phase, participants manually responded to positive traits (i.e., Go traits), prompted by 725 
visual and aural cues presented on screen and from a nearby loudspeaker (CAT). Participants 726 
then completed a free recall test and a probe test, in which they were presented with Go and 727 
NoGo trait word pairs and asked to select the trait word that was more self-descriptive. In the 728 
third phase, half of the positive traits were aurally re-played to sleeping participants during slow-729 
wave sleep (SWS). Then, in the fourth phase, participants completed the same free recall test, 730 
probe test, and SRET. In the second lab visit (~ 7 days later), participants completed the same 731 
free recall test, probe test and SRET as previously completed in the final phase of the first visit to 732 
examine the possible long-term TMR effects. Thus, they completed four self-referential free 733 
recall tests (baseline, post-CAT, post-TMR, delay), three SRETs (baseline, post-TMR, delay), 734 
and three probe tasks (post-CAT, post- TMR, delay).  735 

Baseline tasks 736 

Participants completed preliminary computer-based personality questionnaires, including the 737 
Rosenberg Self-Esteem Scale (RSES) (Rosenberg, 1965), Narcissistic Personality Inventory 738 
(NPI) (Raskin & Hall, 1981), Big Five Inventory (BFI) (John et al., 1991), Beck Depression 739 
Inventory-II (BDI-II) (Beck et al., 1996), State-Trait Anxiety Inventory (STAI state and STAI 740 
trait) (Spielberger, 1983), and Barratt Impulsiveness Scale (BIS-11) (Patton et al., 1995). 741 
Completing these questionnaires served as a cover story for the subsequent self-referential 742 
encoding task (SRET): participants were told that the personality traits that would be presented 743 
in the SRET were from their questionnaire data (for descriptives, see Table S1).  744 

In the SRET (see Figure 1B), a cross symbol was presented on a computer screen at the 745 
beginning of each trial for 0.5 seconds, followed by the presentation of the sentence ‘I think this 746 
word is applicable to me’ in the center of the screen for another 0.5 seconds. After 1.2 to 1.4 747 
seconds, participants were presented with a random word, given visually in written form and 748 
aurally from a speaker, from a selection of 120 adjectives for 0.8 seconds. After, participants 749 
were shown a blank screen for another 0.8 seconds and then were prompted to select if a trait 750 
word applied to them within 2.5 seconds by moving the mouse cursor continuously. The spatial 751 
location of ‘Yes’ and ‘No’ responses were counterbalanced (upper left/upper right or upper 752 
right/upper left). Following a ‘Yes’ response, participants were asked to rate the extent to which 753 
a trait word applied to them on a scale ranging from “slightly accurate” to “extremely accurate”, 754 
covertly equating to values from 1 to 50; following a ‘No’ response, participants were asked to 755 
rate the extent to which a trait word did not apply to them on a scale ranging from “slightly 756 
inaccurate” to “extremely inaccurate”, covertly equating to values from -50 to -1.  757 

Following the SRET, participants completed a self-referential free recall task. Unlike 758 
previous free recall tasks wherein participants wrote down as many traits as possible, here, 759 
participants were asked to recall only the traits they had been presented with and they endorsed 760 
(i.e., “yes” response) during the previous SRET. Participants typed each recalled trait on a 761 
computer one at a time. Therefore, performance during this version of the recall task reflected 762 
self-referential memories.  763 

Traits selection in the probe task 764 
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For each participant, we ranked all 60 positive traits in ascending order based on their baseline 765 
endorsement ratings (from 1, being the lowest rating and least self-descriptive, to 60, being the 766 
highest rating and most self-descriptive). We next equally divided these 60 traits into ‘Go’ and 767 
‘NoGo’ trials, forming 30 Go-NoGo pairs for each participant. We chose traits for each pair 768 
based on each trait rating’s rank orders (i.e., from 1 to 60), to ensure that the Go and NoGo traits 769 
had comparable baseline ratings (p = 0.64, for details, see SOM and Figure S1A). For the post-770 
TMR probe task, these Go/NoGo pairs were further categorized into cued (Go-cued) and uncued 771 
(Go-uncued) conditions, with each condition having 15 trait pairs. Full details for the trait 772 
allocations in the CAT and the probe task are provided in Supplementary Figure 1. 773 

CAT and post-CAT tests 774 

Following baseline assessments, participants completed a cue-approach training (CAT) task (see 775 
Figure 1C). For each CAT trial, a positive trait was presented visually and aurally for 1.2 776 
seconds. For Go trials, each trait was paired with a delayed Go cue that required participants to 777 
press a button as quickly as possible before the trait’s offset. To maintain participants’ attention, 778 
we used an adaptive response window. Specifically, the go-signal-delay (GSD, the delay 779 
between trait onset and Go-cue onset) was approximately 0.9 second. If the participants gave a 780 
timely response (i.e., button press before the offset of the trait), the GSD was increased by 17 ms 781 
to increase task difficulty. If participants failed to make a button press before the offset of the 782 
trial, the GSD was reduced by 50 ms to reduce task difficulty (Salomon et al., 2018; Schonberg 783 
et al., 2014). Conversely, for NoGo trials, participants merely viewed and listened to the traits 784 
without any behavioral responses. All 60 positive traits were presented randomly in each of the 785 
five blocks during the CAT, resulting in a total of 300 trials. Participants could take a 0.5-1-786 
minute break between blocks. While previous CAT research adopts over 10 blocks of training 787 
(Salomon et al., 2018), we chose to only include 5 blocks so as to avoid ceiling effect in 788 
subsequent memory recall. This CAT task was followed by a 5-minute working memory task, 789 
serving as distractions.  790 

Following the working memory task, participants proceeded to a 3-minute post-CAT self-791 
referential free recall task, which was identical to the baseline task. Subsequently, a post-CAT 792 
probe task was administered to evaluate the impact of CAT.  793 

In the probe task (see Figure 1D), participants were presented with Go and NoGo traits in 794 
pairs and were asked to choose which trait would be more self-descriptive. Within each trial, the 795 
Go and NoGo traits were matched on baseline endorsement ratings, so that preferential choices 796 
of Go traits would indicate the CAT training effects. The positions of the Go/NoGo traits per pair 797 
were randomly assigned to the upper-left/right or upper-right/left sides of the monitor in the first 798 
block, and were swapped in the second block. Each trial started with a fixation cross (1 second), 799 
followed by the side-by-side presentation of two traits. Participants selected the trait that would 800 
best describe them by clicking a push button below the trait within 2.5 seconds. The chosen trait 801 
was then highlighted by a button-press shaped image for 0.5 seconds. If participants exceeded 802 
the 4-second response time, a prompt would appear during the confirmation phase, urging them 803 
to respond quickly. We excluded trials with response times exceeding 3 seconds, accounting for 804 
potential mouse delays.  805 

Nap targeted memory reactivation (TMR) 806 
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Participants took a 90-minute nap in a quiet, darkened sleep chamber. Background white noise 807 
(at ~38 dB) was played to participants throughout the duration of the nap via a loudspeaker 808 
placed near the bed. Participants’ brain and physiological activities were continuously monitored 809 
during the map. Upon participants entered SWS for at least 2 minutes, we presented spoken 810 
positive traits (the same spoken traits presented during the SRET and CAT tasks) at 811 
approximately 40 dB. Note that the spoken traits (~40 dB) were played against the background 812 
white noise (~38 dB), yet remained subtle to avoid arousal and waking participants up.  813 

The TMR began with playing a neutral trait (~0.6 s) for three times, ensuring that the 814 
auditory stimulation would not wake participants up. We started playing the spoken traits if 815 
participants did not show signs of arousal or changes in NREM sleep stage. During each round 816 
of the TMR, half of the positive Go traits (i.e., 15 traits) were played together with the neutral 817 
trait as a control word. Each trait last for about 1 second, with a randomized interstimulus 818 
interval of 5–6 seconds. TMR continued as participants remained in the SWS, with a minimal 819 
repetition of three rounds of stimulation, resulting in at least 3 � 16 = 48 trials for TMR-related 820 
EEG analyses. 821 

Specifically, participants were exposed to spoken traits once they entered a sustained 822 
SWS period lasting at least 2 minutes. The TMR procedure was discontinued after 30 minutes, or 823 
earlier if EEG recordings indicated micro-arousal or full awakening. If no SWS was detected 824 
within the first 40 minutes, the presentation of spoken traits commenced during the N2 sleep 825 
stage. After a total sleep session of 90 minutes, participants were awakened if they were in the 826 
N1 or N2 sleep stages, or we waited until they transitioned to these stages before awakening 827 
them. A brief 5-minute break was provided upon awakening to mitigate the effects of sleep 828 
inertia. 829 

Post-TMR tests 830 

Participants completed the self-referential free call task, probe task, and SRET task. Here, the 831 
probe task instructions were identical to the post-CAT probe task, but with randomized ‘Go’ and 832 
‘NoGo’ trait positions. The SRET was similar to the baseline SRET except that participants only 833 
made a Yes/No binary response to each trait, omitting the rating part. 834 

One-week delayed tests 835 

Participants returned to the lab about one week later to complete the delayed tests in the 836 
following order: (1) a 3-minute self-referential free call task; (2) a probe task; (3) a SRET task. 837 
The tasks were identical to the tasks in the post-TMR. Participants were not informed of the 838 
delayed tasks ahead of the time. Upon completing all tasks, participants were debriefed and paid.  839 

Quantification and statistical analysis 840 

Behavioral data analysis 841 

Statistical analyses were carried out using R (Version 4.2.1., R Core Team (2020). We 842 
performed (G)LMMs fitted via ‘glmer’ and ‘lmer’ functions of the ‘lme4’ R package (Bates et al. 843 
2014 June 23) to analyze the CAT- and TMR-induced behavioral changes. For statistical 844 
significance testing, we used Type III Analysis of Variance with the Satterthwaite approximation 845 
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method for the LMM and Type II Wald Chi-Square tests for the GLMM. We followed up 846 
significant effects with post-hoc comparisons in emmeans (Lenth et al., 2022) to derive the 847 
estimated marginal means from each model. Model predictions were visualized with the 848 
‘plot_model’ function from the sjPlot package (Lüdecke, 2023). Unless otherwise stated, we 849 
used the False Discovery Rate (FDR) method to adjust for multiple comparisons to control for 850 
false-positive results. The significance threshold (alpha level) was set at 0.05.  851 

Self-referential preference choices in the probe task 852 

Following previous CAT research (Botvinik-Nezer et al., 2020; Salomon et al., 2018; Schonberg 853 
et al., 2014), we ran generalized linear mixed models (GLMMs) to compare the odds of choosing 854 
Go traits against the chance level (50%, log odds = 0; odds ratio = 1) during post-CAT phase. 855 
Given the alternation of Go/NoGo positions (left and right) in two blocks, we included Go 856 
position as a covariate in our model. The GLMM was defined as:  857 

Preference Choice (Go/NoGo) ~ 1 + Position +(1|Subject ID)  858 

Self-referential endorsement in the SRET 859 

We employed a generalized linear mixed model (GLMM) to examine how TMR conditions (Go-860 
cued, Go-uncued, and NoGo-uncued) influenced participants’ endorsement for positive traits 861 
across time (baseline, post-TMR and delay). We used baseline endorsement rating as a covariate 862 
and participant as random effect. The model was defined as: 863 

Endorsement choice (Yes/No) ~ 1 + Baseline endorsement rating + Time × TMR 864 
Condition + (1+ TMR Condition + Time |Subject ID)  865 

Subsequently, we employed a linear mixed model (LMM), incorporating the same factors 866 
as used in the preceding GLMM for binary choice outcomes to analyze RTs when endorsing 867 
positive traits except that we removed TMR as random slope due to singular fitting:  868 

RTs (via log-transformed) ~ 1 + Baseline endorsement rating + Time × TMR Condition + 869 
(1 + Time |Subject ID)  870 

In addition, we also ran a GLMM to examine the endorsement changes for negative traits, 871 
using time as a fixed effect: 872 

Endorsement choice (Yes/No) ~ 1 + Baseline endorsement rating + Time + (1 + Time | 873 
Subject ID) 874 

Lastly, in order to assess whether CAT alone influenced the response speed during the 875 
endorsement of positive traits, we employed another LMM in two additional behavioral samples. 876 
These samples comprised one group that underwent only CAT training (referred to as the ‘active’ 877 
group) and another group that received no CAT training (referred to as the ‘passive’ group). 878 
Detailed information on these two behavioral samples can be found in the Supplementary Online 879 
Material (SOM). The LMM incorporated several fixed effects: group (active vs. passive), time 880 
(baseline, post-CAT, delay), and CAT (Go vs. NoGo). Additionally, the baseline endorsement 881 
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rating was included as a covariate. The model also accounted for random effects at the 882 
participant level: 883 

RTs (via log-transformed) ~ 1 + Baseline endorsement rating + Group × Time × CAT 884 
Condition + (1 + Time |Subject ID)  885 

Self-referential memories in the free recall task 886 

To understand how TMR affect self-referential memories across time, we ran a GLMM using 887 
TMR (Go-cued, Go-uncued, and NoGo-uncued), and time (baseline, post-CAT, post-TMR, and 888 
delay) as fixed effects, baseline endorsement rating as covariate, participant as random effect. 889 
Time was removed from random slope given singular fitting issue. The model was defined as 890 
follows: 891 

Recall outcome (Yes/No) ~ 1 + Baseline endorsement rating + Time × TMR Condition + 892 
(1 + TMR Condition | Subject ID) 893 

Additionally, a GLMM was applied to analyze negative traits, using time as a fixed effect:  894 

Recall outcome (Yes/No) ~ 1 + Baseline endorsement rating + Time + (1 | Subject ID) 895 

Finally, incorporating data from two additional samples — one with only CAT training 896 
and another with no training (see SOM for details regarding behavioral samples)— we expanded 897 
our analysis to encompass three distinct groups. To assess delayed recall across these groups, we 898 
employed a GLMM on delayed recall performance with baseline and post-CAT recall as 899 
covariate, training groups (i.e., both TMR and CAT trained, only CAT trained, no CAT trained) 900 
as fixed effect: 901 

Recall outcome (Yes/No) ~ 1 + Baseline recall + Post-CAT recall + Baseline 902 
endorsement rating + Group + (1 + Group | Subject ID) 903 

EEG data analysis 904 

EEG data pre-processing  905 
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Continuous EEGs were recorded using a 63-channel customized cap with passive Ag/AgCl 906 
electrodes via a BrainAmp amplifier with a 1000 Hz sampling rate (Brain Products, Gilching, 907 
Germany). Electrodes were positioned according to the International 10–10 system. The ground 908 
electrode was located at AFz, with FCz as the on-line reference electrode. Impedances were kept 909 
below 20 kΩ. We placed one electro-oculography (EOG) electrode under participants’ left eyes 910 
and bipolar electromyography (EMG) electrodes on their chins to monitor eye movements and 911 
muscle activity during sleep.  912 

EEG data were pre-processed using custom-written scripts and the MATLAB Toolbox 913 
EEGLAB (Delorme & Makeig, 2004). First, nap EEG data were down-sampled to 250 Hz, 914 
notch-filtered at 50 Hz, and then re-referenced to the averaged mastoids. Second, EEG data were 915 
band-pass filtered at 0.5 to 40 Hz. While EOG and EMG data were used for sleep staging, these 916 
data were not used in the time-frequency analysis.  917 

Offline Sleep Stage Scoring  918 

Sleep stages, including N1, N2, Slow-Wave Sleep (SWS), and Rapid Eye Movement (REM), 919 
were scored using EEG (Channel C4), EOG, and EMG patterns. This process employed 920 
algorithms from the YASA open-source Python Toolbox (Vallat & Walker, 2021). Consistent 921 
with YASA guidelines, the EEG data were initially re-referenced to FPz before conducting the 922 
staging analysis. Table 1 presents the sleep staging results for 34 participants (One participants 923 
only reserved 28 min EEG data including TMR stage). 924 

Table 1 925 

Sleep stages parameters (mean�±�SEM, in minutes, N = 34). 926 

Total time Wake N1 N2 N3 REM 

90.10 

± 

1.27 

7.76 

± 

1.19 

7.18 

± 

0.63 

36.00 

± 

1.56 

27.00 

± 

1.83 

12.36 

± 

1.27 

 927 

EEG time-frequency analysis  928 

Before analyzing cue-elicited time-frequency EEG power changes, the cue-elicited EEG data 929 
were epoched into -1.5 to 5.5 second segments, relative to the onset of each cued trait word. This 930 
long epoch ensured that we had enough edge artifact-free segments for each clean epoch to 931 
assess TMR benefits ( -1 to 3 seconds). Epochs with artefacts were visually inspected and 932 
removed. Time-frequency decomposition was performed in the Fieldtrip open-933 
source MATLAB toolbox (Oostenveld et al., 2011). We used 3 to 10 cycles in a step of 0.5 Hz 934 
Morlet wavelet and baseline corrected using z-transformation of all trials from -1 to -0.1 seconds 935 
relative to the cue onset. Following previous sleep and TMR studies (Mölle et al., 2011; Wilhelm 936 
et al., 2020; Xia et al., 2023; Züst et al., 2019), we calculated the mean EEG power over frontal-937 
central channel (F1/2, FC1/2, C1/2, Fz, Cz) to ensure the robustness of results. The calculated 938 
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time-frequency decompositions were then down-sampled to 50 Hz. To investigate cue-elicited 939 
EEG activity, we employed the rigorous cluster-based one-sample permutation t-test (cluster-940 
thresholding p at 0.001) to identify the significant cluster against zero across all participants in 941 
the time-frequency domain (Maris & Oostenveld, 2007).  942 

Traveling wave analysis  943 

We employed a traveling wave analysis approach similar to that used by Alamia et al. 2023. This 944 
involved calculating values for spontaneous slow backward (from the anterior to posterior 945 
regions) and forward (from posterior to anterior regions) traveling waves using 2D Fast Fourier 946 
Transform (FFT) on the time-electrode EEG signals. The power measured in the upper right and 947 
lower right quadrants corresponded to the amount of backward and forward propagating waves, 948 
respectively, as shown in Figure 4A. Specifically, we used EEG data from the interval after cue 949 
onset [0, 2000] ms during NREM stage 3 (based on YAS staging result) across midline positions 950 
(POz, Pz, CPz, Cz, Fz, FPz) to create time-electrode EEG representations. To establish a baseline, 951 
we shuffled the electrodes and repeated this process. For the slow wave range (1–4 Hz), we 952 
identified the maximum values in the 2D-FFT spectra in both the actual data (BW and FW) and 953 
the shuffled data (BWss and FWss). The magnitude of the backward and forward traveling waves, 954 
expressed in decibels [dB], was calculated as: 955 

             Backward =10×log
10

BW BW
ss

⁄  ; Forward =10× log
10

FW FW
ss

⁄                                (1) 956 

Brain-behavior association analysis 957 

To establish a direct link between TMR-induced behavioral changes and TMR-elicited EEG 958 
activity, we extracted the averaged power within the identified significant positive clusters, and 959 
also calculated mean traveling waves for each participant at each item level. Then we performed 960 
a series of LMMs using EEG power and traveling waves to predict post-TMR SRET 961 
performance metrics, including endorsement choices and positive endorsement RTs. All EEG 962 
metrics were centered before being included as fixed effects. We used GLMM to predict 963 
endorsement choice (Yes/No) and LMMs to predict RTs for endorsing positive traits. The 964 
models were defined as: 965 

(1) Post-TMR endorsement choice (Yes/No) ~ 1 + Positive delta-theta-alpha cluster/ 966 
Positive sigma-beta cluster/ Forward traveling wave / Backward traveling wave + Baseline 967 
Choice + Repetition + (1|Subject ID).  968 

(2) Delay endorsement choice (Yes/No) ~ 1 + Positive delta-theta-alpha cluster/ Positive 969 
sigma-beta cluster/ Forward traveling wave / Backward traveling wave + Baseline Choice + 970 
Repetition + (1|Subject ID).  971 

(3) Post-TMR RTs for endorsing positive traits ~ 1 Positive delta-theta-alpha cluster/ 972 
Positive sigma-beta cluster/ Forward traveling wave / Backward traveling wave + Baseline RTs 973 
+ Repetition + (1|Subject ID).  974 
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(4) Delay RTs for endorsing positive traits ~ 1 + Positive delta-theta-alpha cluster/ 975 
Positive sigma-beta cluster/ Forward traveling wave / Backward traveling wave + Baseline RTs 976 
+ Repetition + (1|Subject ID).  977 
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